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Abstract— In order to accomplish an agile robotic manip-
ulation, we need to endow our robot with tactile feedback
capability, i.e. the ability to drive action based on tactile sensing.
In this paper, we specifically address the challenge of tactile
servoing, i.e. given the current tactile sensing and a target/goal
tactile sensing — memorized from a successful task execution
in the past — what is the action that will bring the current
tactile sensing to move closer towards the target tactile sensing
at the next time step. We develop a data-driven approach to
acquire a dynamics model for tactile servoing by learning from
demonstration. Moreover, our method represents the tactile
sensing information as to lie on a surface — or a 2D manifold
— and perform a manifold learning, making it applicable to
any tactile skin geometry. We evaluate our method on a contact
point tracking task using a robot equipped with a tactile finger.

I. INTRODUCTION

Tactile sensing holds an important role in guiding object
manipulation, as has been shown in a previous experiment
[1]. To this end, recently a variety of tactile sensors [2],
[3] have been developed and used in robotics research
community, and researchers have designed several tactile-
driven control — or popularly termed as tactile servoing —
algorithms. However, many tactile servoing algorithms were
designed for specific kinds of tactile sensor geometry, such
as a planar surface [4] or a spherical surface [5], hence they
do not apply to the broad class of tactile sensors in general.

In this paper, we present our work on a learning-based
tactile servoing algorithm that does not assume a specific
sensor geometry. For this purpose, we train a latent space
dynamics model [6], [7] –that takes the latent representation
of the current tactile sensing and the applied action, and
predicts the latent representation of the next tactile sensing–
which is termed as forward dynamics. Since we use the
model for control, i.e. tactile servoing, it is also essential
that we can compute actions, given both the current and
target tactile sensing — termed as inverse dynamics. Our
contribution is twofold: First, we employ a manifold learning
technique to impose a Euclidean structure in the latent
space representation of tactile sensing, such that the control
in this space becomes straightforward. Second, we train a
single model that is able to do both forward dynamics and
inverse dynamics prediction for tactile servoing using the
same demonstration dataset, which is more data-efficient
than training separate models each [8]. All components
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in our model are trained in a supervised manner, without
reinforcement learning.

II. DATA-DRIVEN TACTILE SERVOING MODEL

A. Tactile Servoing Problem Formulation
Given the current tactile sensing st and the target tactile

sensing sT , the objective is to find the action at which will
bring the next tactile sensing st+1 = f(st,at) closer to sT ,
which in the optimal case can be written as:

a∗t = arg min
at

d(f(st,at), sT ) (1)

B. Latent Space Representation
If the distance metric d is a squared L2 distance of two

states, which lie on a Euclidean space and if f is smooth,
then inverse dynamics a∗t can be computed as proportional to
− ∂d

∂at
. Moreover, for some f , the a∗t in Eq. 1 can be computed

analytically, at the condition ∂d
∂at

= 0. Unfortunately, both
st+1 and sT may not lie on a Euclidean space.

However, there seems to be natural characterizations of
tactile sensing, such as contact points. A contact point is
a 3D coordinate which lies on the skin surface. The skin
surface is a 2D manifold (or space) –which may be bent on
several parts– existing inside a 3D Euclidean space R3. If we
are able to flatten the skin surface into a 2D Euclidean space
R2, then the inverse dynamics a∗t in Eq. 1 can be computed
in a straightforward manner. Fortunately, this flattening can
be done by a manifold learning technique called Multi-
Dimensional Scaling (MDS) [9]. We obtain the latent state z
via the embedding function (at time t) zt = fenc(st) which
is represented by the encoder part of an auto-encoder.

C. Latent Space Forward Dynamics (LFD) and Inverse Dy-
namics (ID)

We assume the LFD model as follows:
żt = ffd(zt,at; θd) (2)

where θd is the set of trainable parameters of the dynamics
model. Numerical integration gives us the discretization:

zt+1 = fdfd(zt,at,∆t; θd) = zt + ffd(zt,at; θd)∆t (3)
We explored a variety of combinations of LFD and ID
models as can be seen in our full paper [10]. Our best result
is achieved with a non-linear (NL) LFD model as follows:

żt = ffd(zt,at; θd) = hfcnnNL(

[
zt
at

]
; θd) (4)

hfcnnNL is a fully-connected neural network (fcnn) which
represents the NL LFD model. We would like to be able
to predict the forward dynamics in the latent space, so we
define the following loss function:

LLFD =

H∑
t=1

‖fdfd(zt,at,∆t; θd)− fenc(st+1)‖2 (5)



with zt+1 is computed from Eq. 2 and 3. Based on the
NL LFD model, we can derive the following from Eq. 4
(dropping time index t for a moment):

z̈ =
[
Jz Ja

] [ż
ȧ

]
= Jz ż + Jaȧ (6)

which can be discretized into:

zt+1 =zt +

(
1

∆t
I + Jzt−1

)
∆t (zt − zt−1)

+ Jat−1
∆t (at − at−1) (7)

with Jzt−1
and Jat−1

are the Jacobians of hfcnnNL
1 w.r.t.

previous latent state zt−1 and previous action at−1, respec-
tively. Let us define Āt−1 =

(
1

∆tI + Jzt−1

)
, B̄t−1 = Jat−1

,
and c̄t−1 = −Āt−1zt−1 − B̄t−1at−1, then Eq. 7 can be
written as zt+1 = zt + (Āt−1zt + B̄t−1at + c̄t−1)∆t. We
can setup a constrained optimal control problem:

min
at, zt+1

1

2
‖zT − zt+1‖2 +

β

2
‖at‖2

s.t. zt+1 = zt + (Āt−1zt + B̄t−1at + c̄t−1)∆t

(8)

whose solution is:

at,ID = B̄T
t−1

(
B̄t−1B̄

T
t−1 +

β

∆t2
I

)−1 (zT − zt
∆t

− Āt−1zt

− c̄t−1

)
(9)

Derivations of Eq. 9 from Eq. 8, can be seen in the
Appendix of [10]. From Eq. 9, we can write:

at,ID = fid(zT , zt, zt−1,at−1,∆t; θd) (10)
For our purpose, it is mostly important that the inferred in-
verse dynamics action points to the right direction. Therefore,
we can leverage the demonstration dataset to also optimize
the following inverse dynamics loss:
LID =
H∑
t=1

∥∥∥∥ fid(zT = zt+1, zt, zt−1,at−1,∆t; θd)

‖fid(zT = zt+1, zt, zt−1,at−1,∆t; θd)‖
− at

‖at‖

∥∥∥∥2

(11)
The training losses LLFD and LID are minimized with
respect to θd on the human demonstrations’ trajectory dataset
{(st−1,at−1, st,at, st+1)}t∈{1,...,H}.

III. EXPERIMENTS

We evaluate our approach on the right arm of a bi-manual
anthropomorphic robot system equipped with a biomimetic
tactile sensor BioTac [2] on the tip of the middle finger of the
right hand. We setup the end-effector frame to coincide with
the BioTac finger frame, and choose the end-effector velocity
expressed with respect to the end-effector frame as the
action/policy representation for a good policy generalization.

In terms of Multi-Dimensional Scaling (MDS) perfor-
mance, we plot the x-y coordinates of the latent space embed-
ding of all tactile sensing s data points in the demonstration,
in Figure 1. Each data point is colored and labeled based on
the BioTac electrode index with maximum activation.

In Fig. 2, we provide snapshots of robot executions with
real-time tactile sensing from the BioTac finger. We see that

1These Jacobians and its derivatives (for neural network training) exist
because we choose smooth activation functions for hfcnnNL, such as
hyperbolic tangent (tanh).

Fig. 1. x-y dimensions of latent space embedding by MDS

(a) Rotation 1 (b) Rotation 2 (c) Rotation 3 (d) Rotation 4

(e) Translat. 1 (f) Translat. 2 (g) Translat. 3 (h) Translat. 4

Fig. 2. Snapshots of our experiments on tactile servoing with the learned
model on a robot. Red sticker indicates the target contact point. Figures
(a)-(d) are for a target contact point whose achievement requires rotational
change of pose of the BioTac finger. Figures (e)-(h) are for a target contact
point whose achievement requires translational change of pose.

the system is able to produce the required rotational motions
(Fig. 2 (a)-(d)) and translational motions (Fig. 2 (e)-(h))
needed to achieve the specified target contact point. The full
pipeline of the experiment can be seen in the video https:
//youtu.be/0QK0-Vx7WkI.

IV. FUTURE WORK

We would like to extend this method by integrating vision
and tactile information for robust robotic manipulation.
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