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Abstract— We have designed and built a set of tactile finger-
tips for integration with a commercial, three-fingered robot
hand, the Shadow Modular Grasper. The fingertips are an
evolution of an established optical, biomimetic tactile sensor,
the TacTip. From these fingertips, we extract a set of high-level
features with intuitive relationships to tactile quantities such
as contact location and pressure. We present a simple linear-
regression method for predicting roll and pitch of the finger-pad
relative to a surface normal. Finally, we apply this prediction
to a grasp-control method with the Modular Grasper and show
that it can adjust the grasp on three real-world objects from
the YCB object set in order to attain a greater area of contact
at each fingertip.

I. INTRODUCTION

Robot hands have seen accelerated development in recent
years [1], advancing attributes such as dexterity, grip strength
and ease of use, yet a gap persists for automation of small
scale production, where robots are required to grasp and
manipulate unknown objects [2]. This gap can only be filled
by dexterous, multi-fingered robot hands.

Given the advances in the state-of-the-art of robot hands,
it is surprising such hands have not yet found widespread ap-
plication. One contributing factor may be a lack of sufficient
tactile sensing capabilities.

Although many researchers have integrated tactile sensors
with dexterous robot hands [3]-[6], a common shortcoming
is the nature of the tactile data available and/or the amount of
data required to interpret it. Here we present a more flexible
platform by integrating a highly sensitive, high-resolution,
optical tactile sensor with a fully-actuated industrial robot
hand and we demonstrate the potential for this system to
improve grasps on unknown, real-world objects using simple
algorithms and relatively small amounts of training data.

II. MATERIALS AND METHODS
A. Hardware

1) Shadow Modular Grasper: The Shadow Modular
Grasper is fully actuated with 9 degrees of freedom (three per
finger). Each joint has a dedicated torque sensor for closed
loop control and also features a back-drivable gearbox en-
abling inherent compliance, which is an essential component
when working in unstructured environments.

2) Tactile Fingertip Design: Tactile sensing is enabled
with three custom-built tactile sensors based on an estab-
lished biomimetic, optical tactile sensor, the TacTip [7]. The
inside of a deformable skin is tessellated with a triangular
pattern of 97 white markers that provide a visual represen-
tation of the tactile stimulation. The pins are imaged via a
2.0 megapixel CMOS array USB web-cam (ELP cameras)
mounted on the back of the fingertip. The markers are
illuminated by four LEDs arranged on two narrow PCB strips
of two LEDs each.
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Fig. 1: Image of the developed tactile sensors integrated
with the Shadow Modular Grasper. Base, proximal and distal
joints are labelled in red, B, P and D respectively. Tactile
fingertips A, B and C are labelled in blue.

Fig. 2: (a): View of markers imaged by the camera and
tracked with OpenCV. (b): Voronoi tessellation over mark-
ers. (¢): Visual representation of surface deformations with
centre-of-pressure shown as a green spot.

Feature extraction is performed using a Voronoi method
previously demonstrated to achieve direct inference of pres-
sure and contact locations with the TacTip [8]. A centre-of-
pressure, a tactile analogue of centre-of-mass, is computed
as an average of marker positions weighted by their corre-
sponding cell area (Fig. 2c).

3) Hardware Integration: Integration of three sensors has,
to date, not been attempted with TacTip-based sensing. A
solution proposed here is to connect each tactile fingertip to
its own dedicated USB-hub. With three dedicated hubs, the
data transfer occurs in parallel without reducing the frame
rates, ~20 fps per camera.

B. Experimental Procedure

Orientation of the fingertip relative to the contact surface
may be of importance when grasping an object. For example,
greater frictional forces are achieved with a larger contacting
surface area, which is affected by relative angle between
fingertip and object.



Fig. 3: Images of the grasps on the Rubik’s cube, Pringles can and mustard bottle, before and after tactile adjustment; top
and bottom rows respectively. Tactile visualisations for the three fingertips are displayed to the right of each grasp image.
Fingertips are labelled on the top left image and visualisations for reference.

1) Data collection and training: The fingertip is mounted
as an end-effector on a six degree-of-freedom robot arm
(URS5, Universal Robotics). The sensor maintains continual
contact with a flat acrylic plate and the robot re-orients the
sensor relative to the plate. Data is sampled randomly from a
2D grid of roll, ¢, and pitch, §. We map centre-of-pressure-
xy position to ¢ and @ via a 2"-order polynomial regression
model.

2) System Integration - On-line Grasp Adjustment: For
the purpose of this study, we intend to use the predicted
¢ and 6 to adjust a grasp. Three Python drivers, one for
each sensor, run on the host PC and interact with the grasp
controller (C++) via a ROS-network.

After all sensors have detected contact of the grasped
object an adjustment phase is entered: the controller switches
all proximal joints to torque mode and applies a fixed
squeezing torque to the object. Base and distal joints remain
in position mode and are servoed with a PID controller. PID
inputs are ¢ and 6 predictions for base and distal joints
respectively, thus, the hand attempts to servo the finger-pads
to ¢ and 0 = 0.

III. RESULTS

Fig. 3 shows successful grasps of all three objects. Along-
side each image are tactile visualisations from each fingertip.
The objects are initially held in place by a human participant
before passing over to the robot when all three fingers have
made contact. The top row shows images at initial contact
detection (prior to tactile adjustment) and the bottom row
shows images after tactile adjustment, ~10s later.

The top and bottom rows of Fig. 3 show noticeable
differences in both the grasp images and the tactile visu-
alisations. In general, the images show that the fingertips
rotated around each object to minimise ¢ and 6. Inspection
of the tactile visualisations suggests that overall deformation
of each fingertip increased subsequent to adjustments in
all cases. This suggests that, for these examples, the grasp
controller performed as designed: to increase contact surface
area and, thus, also the frictional forces at each fingertip.

IV. DISCUSSION

In this study, we presented the integration of an estab-
lished optical tactile sensing technology, the TacTip, with a
three-fingered, commercial robot hand: the Shadow Modular
Grasper. The sensors were tested for predicting roll and pitch
relative to a flat surface. Finally, we integrated tactile output
with the hand control and demonstrated grasps on three real-
world objects, using predicted roll and pitch angles to adjust
the grasp for attaining greater contact surface areas at each
finger-pad.
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