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Abstract— Manipulation tasks often require robots to be
continuously in contact with an object. Therefore tactile per-
ception systems need to handle continuous contact data. Shear
deformation causes the tactile sensor to output path-dependent
readings in contrast to discrete contact readings. As such, in
some continuous-contact tasks, sliding can be regarded as a
disturbance over the sensor signal. Here we present a shear-
invariant perception method based on principal component
analysis (PCA) which outputs the required information about
the environment despite sliding motion. A compliant tactile sen-
sor (the TacTip) is used to investigate continuous tactile contact.
First, we evaluate the method offline using test data collected
whilst the sensor slides over an edge. Then, the method is used
within a contour-following task applied to 6 objects with varying
curvatures; all contours are successfully traced. The method
demonstrates generalisation capabilities and could underlie a
more sophisticated controller for challenging manipulation or
exploration tasks in unstructured environments.

I. INTRODUCTION

Continuous contact sensing is crucial for robot manipu-
lation or tactile exploration as these activities usually re-
quire the robot to be in continuous contact with objects.
Furthermore, it is frequently desirable to use compliant touch
sensors, which make the perception more challenging due to
motion dependency caused by their sensitivity to shear [1].
Shear deforms the sensor (Fig. 1) depending on the sliding
direction, thus making sensor readings history dependent.

The novelty of this work is to verify the hypothesis that
features found in independent tactile readings (taps) can also
be extracted from data perturbed by sliding motion. Sliding
motion causes the sensor skin to deform, and so sensor
readings would depend on both the tactile features of the
object and the shear direction. Thus, while discrete tap data
is similar for the same tactile features, with sliding motion
those features can produce completely different readings.
This paper finds a link between discrete tactile data (taps) and
movement dependent data by showing that a linear transform
can extract features of interest despite the sliding.

For validation, we apply a simple perception method
trained on discrete contact data (taps) to continuous contact
data collected offline and to continuous contact data for
contour-following whilst sliding. The perception method uses
principal component analysis (PCA) to extract features from
tactile data which are then mapped to the sensor pose using
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Fig. 1: (a) The experimental setup showing four 3D-printed objects, a natural
object (a tape measure) and a laser-cut spiral used for contour-following.
The TacTip is the end effector of a 6 axis ABB robot (IRB120). (b) Close-up
of the TacTip sensor. (c) The image captured by the TacTip at no contact.

nonlinear regression. We also exploit PCA to visualise the
output of a soft biomimetic tactile sensor (the TacTip [2],
[3], shown in Fig. 1) and show that the data are strongly
influenced by the sliding direction of the sensor. This
shear-invariant perception method extends previous tactile
exploration studies [4], [5] that used tapping movements
(independent tactile data) by demonstrating reliable sliding
contact tactile exploration (contour-following) of various
objects (Fig. 1a) despite being trained using discrete contacts
on a straight edge.

II. RESULTS

We present the online results for a tactile exploration task,
specifically contour-following where the sensor continuously
slides along the edge of various shapes.

We use four 3D-printed shapes, an acrylic laser-cut spiral
shape, and a tape measure (Fig. 1a) for this task. The shapes
were chosen to test the limits of the method. The rectangle
has zero curvature and corners. The two circles have different
constant curvatures. The flower-like shape has both negative
and positive curvatures. The tape measure is a natural object
and has different curvature values and a corner. Finally, the
spiral shape has negative and positive curvatures, contains
corners and has closely spaced features.

Our approach successfully traced all contours (Fig. 2) by
using the perception algorithm which consist of a PCA di-
mension reduction step and nonlinear regression along with a
simple control policy. The RMS orientation errors are similar
for all shapes with an average value of 12.2◦ which agrees
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Fig. 2: (a) The trajectory (blue trace) performed by the robot when following the contour of a: (a) rectangle, (b) large circle, (c) small circle and (d)
flower-like shape. The grey lines show the normal to the object edge as perceived by the sensor.

with the errors obtained for the 270◦ sliding direction. The
perception algorithm handles corners (Fig. 2a) by gradually
perceiving a varying angle which changes smoothly over the
corner. This was not a trained behaviour but emerged from
the algorithm. The algorithm thus generalises to different
curvatures.

The algorithm generalises from discrete contact tactile
data collected on a zero curvature edge to data recorded
whilst performing sliding motion over edges having varying
curvature properties. The perception is not influenced by
changes in curvature magnitude as shown by the two circles
(Figs. 2b, c) or by whether the curvature is positive or
negative as demonstrated by the flower-like shape (Fig. 2d).
The perceived lateral position errors do not impact the
success of the contour-following as shown by the smooth
shape-preserving trajectories achieved.

III. DISCUSSION

The paper has demonstrated that a PCA-based perception
algorithm can infer edge features invariant of the sliding mo-
tion. We achieved successful continuous contour-following of
a wide range of shapes, thus showing that the simple features
found by PCA with a suitable discrete contact training set
are robust to sliding and to changes in curvature.

The PCA part of the algorithm also helps to visualise
the sliding data which builds upon the tactile visualisation
presented by Aquilina et al. [6]. Here we show that vi-
sualisation of the multi-directional data reveals continuous
tactile data is history dependent on the sliding direction.
However, PCA can also encode the sliding vector in each
sensor frame, which may be useful in experiments where
sliding is a quantity of interest.

Additionally, due to the simple features extracted using
PCA, the algorithm was able to generalise to various flat
objects of an unknown shape despite being trained only
on a portion of a straight edge. This is related to the
work by Luo et al. [7] where a specific data descriptor
yields rotation and translation invariance. However, the most
common approach is to obtain invariance by training on
samples which have different properties such as the shape-
invariant method presented by Yuan et al. [8]. This would
have been equivalent to using a sliding contact training set
in this work. However, in practice it may not be possible

to train for every event the system could encounter; instead
we view it desirable to have a robust system that produces
reasonable results on a wide range of scenarios.

We expect the proposed method to apply to more challeng-
ing tasks due to its generalisation capabilities. Such a method
could be combined with more complicated controllers using
predictive or adaptive control to complete demanding manip-
ulation or exploration tasks in unstructured environments.
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