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I. INTRODUCTION

The correlation between hand dexterity and the spatial-
and-pressure resolution of its tactile sensors has been of
interest for a long time [1]. In the 19th century, Weber
explored spatial acuity with the “two-point touch threshold”,
i.e., the shortest distance that can be perceived as two
separate pressure points. Later, Max von Frey studied the
sensitivity to different levels of applied pressure [2]. It comes
with no surprise that the regions with finer spatial sensor
resolution, and those that are more sensitive to pressure, are
the tips of our fingers and the tip of our tongue, both known
for their dexterity.

This work builds from a recent interest in image-based
tactile sensors such as GelSlim [3] or GelSight [4] which,
by virtue of using a soft gel skin and a camera as transducer,
achieve very high spatial acuity and pressure sensitivity,
yielding highly discriminative tactile signals.

In this work we show that we can combine tactile imprints
with robot kinematics to build a tactile map of an object for
localization. To do so, we present 3 contributions:

1. Local shape estimation: we use tactile imprints to
estimate the shape of the contact patch using CNNs.

2. Global tactile mapping: we fuse the tactile imprints and
the kinematics (gripper pose and opening) of multiple
grasps of a fixed object to reconstruct its global tactile
shape. This includes the object geometric shape as well
as a discrete representation of its tactile imprints.

3. Object tactile localization: Figure 1 illustrates how we
combine tactile imprints with an estimation of the shape
of the contact patch to identify and localize a grasped
object. Our ICP-based algorithm uses tactile imprints
for coarse data association, and contact shape for fine
refinement.

II. LOCAL SHAPE ESTIMATION

We recover the local shape of an object from a tactile
imprint. The local shape is given as a heightmap and aims
to represent the local geometry of an object at contact. In
Fig. 2, we use a data-driven approach to build a map between
tactile imprints and local shapes.

Given that tactile images and heightmaps are 2D arrays,
we leverage standard CNNs. The basic architecture of the
CNN we use is a sequential model of 10 convolutional
layers with 64 filters each and a 3-by-3 sized kernel. To
improve the robustness to illumination changes, we augment
the data including random variations in the 3 channels

Fig. 1. Tactile mapping and localization. This work addresses the problem
of in-hand object identification and localization using tactile sensing. Given
a new tactile imprint from the tactile sensor in the robot’s finger, we use
the precomputed (offline) tactile map of an object to identify and find its
location inside the grasp.

of the tactile images. We also account for translations by
adding two extra channels to the input with the x and y
position of each pixel. A more in detail explanation of the
data collection and training process can be found in the
project’s website [5]. When evaluating the model, the average
reconstruction accuracy reaches 0.1mm on the test data with
only 500 datapoints and 0.060±0.016mm with 2000.

III. GLOBAL TACTILE AND SHAPE MAPPING

We combine a set of tactile imprints from an object to
recover its tactile shape. This method for shape recovery
relies on the accuracy of the robot kinematics and the gripper,
and the precision of the heightmaps described in Sec.II.

Each tactile imprint of the tactile map can be converted in
a point cloud in the world frame. For that, we first map
the tactile imprint into a heightmap as explained before,
and use an accurate calibration of the intrinsic parameters
of the sensor’s camera to convert this heightmap into a
point cloud in the sensor’s frame. Then we localize the
point cloud in the world’s frame by assuming a rigid and
calibrated transformation between sensor, gripper and robot



Fig. 2. Local shape estimation. To estimate the shape of an object at contact, we built a system that automatically collects data and maps tactile imprints
to heightmaps of the local shape. From left to right: a) objects used for training, b) robot collecting data by frontally touching random locations of an
object, 3) tactile image recorded during the touch, and 4) heightmap of the object’s shape at contact obtained using a trained CNN.

Fig. 3. Tactile localization. Given a new tactile imprint, we find its location in an offline computed tactile map (0) by following the steps: (1) find the
N touches from the map that are more similar to the new one, (2) create an auxiliary point cloud with these N touches that is a subset of the global one,
and (3) use ICP to stitch the local point cloud from the new tactile imprint to the auxiliary one to locate its pose in the global shape.

arm. Finally, we build a tactile map of an object by stitch
all its point clouds obtained into a single one.

IV. TACTILE LOCALIZATION

Given the tactile map of an object, our goal is to effectively
use it for robotic manipulation. To show this, we examine and
evaluate how to localize the object based on correspondences
between the tactile shape and local tactile imprints.

The proposed approach is described in Figure 3. We first
recover the local shape in the sensor’s frame as a point cloud
using its tactile imprint as in Section II. Then we stitch this
local point cloud to the global tactile shape of the object
and infer how the resulting point cloud is located w.r.t to the
tactile sensor. Finally, given the robot kinematics we estimate
the actual pose of the object in the world frame.

V. IN-HAND IDENTIFICATION AND LOCALIZATION

Given a set of tactile shapes from explored objects and a
new tactile imprint, our goal is to recover both the identity
of the object and its location in-hand. We identify it by
comparing the new tactile imprint to the ones used to create
the global maps of each object, and assigning the identity
from the most similar tactile imprint. Once identified, we
stitch the new tactile imprint to its global shape as in
Section IV and obtain its pose w.r.t. to the tactile sensor.

Figure 4 shows 3 examples of grasped objects and their
tactile imprints. Our approach correctly identifies each object
and estimates its location in-hand. The solution is fast enough
to provide real time estimations of the pose as the only steps
are: one CNN pass, a similarity comparison in a feature
vector space and ICP with small point clouds.

Fig. 4. Object identification and localization. From each random
grasp and tactile imprint, our approach identifies correctly the object and
accurately estimates its position in-hand.
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